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Abstract

The macroscopic modelling of in-plane elastic behaviour of composite solids made with regular orthotropic texture
is the object of the present study. At the macro-scale, the effect of heterogeneity can be included by adopting an homog-
enisation toward a generalised continuum on which specific finite element codes are based. As an alternative, a specific
rigid element approach has been recently proposed [Casolo, S., 2004. Modelling in-plane micro-structure of masonry
walls by rigid elements. International Journal of Solids and Structures 41(13), 3625–3641] based on a discrete mecha-
nistic formulation. This paper presents a sequel of such research, and expounds the theoretical relationship between the
orthotropic Cosserat continuum and the proposed rigid elements. Then, referring to two different masonry-like tex-
tures, the constitutive parameters of the corresponding Cosserat continuum and of the rigid element model are calcu-
lated. Numerical analyses compare their performance, and display the impact of the composite texture in the case of a
concentrated load. The capability to discern the behaviour of different structured materials at the macro-scale is pointed
out by observing how the local rotation of the blocks and the consequent different deformation of vertical and horizon-
tal joints have influence on the strain field maps.
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1. Introduction

The engineering demand for computational models capable to describe the macroscopic mechanical
behaviour of complex structures made of heterogeneous solid materials is at the basis of the present re-
search. The impact of heterogeneity at the macro-scale essentially depends on the geometry of internal tex-
ture, the difference of mechanical properties of the material components, and the ratio of micro-structure
lengths respect to the global size of the system. In particular, micro-structure effects become relevant in the
presence of high strain gradient, with softening materials, and complex shear response. Macroscopic mod-
els capable to account for the peculiar behaviour of structured materials are particularly required in the
field of structural dynamics where engineering applications need the description of the global response
of large structures with a reasonable number of degrees of freedom.

In the frame of continuum solid mechanics, homogenisation toward a generalised continuum is often
used as the basis for implementation of specific finite element models (e.g. Nakamura et al., 1984;
Ristinmaa and Vecchi, 1996; Shu et al., 1999; Providas and Kattis, 2002). The effective determination of
the macroscopic constitutive coefficients of a generalised continuum material is clearly the focus of the
micro–macro transition procedure. Both analytical and computational approaches have been proposed
in literature with reference to the behaviour of periodic heterogeneous materials (Forest and Sab, 1998;
van der Sluis et al., 1999; Bouyge et al., 2001; Forest et al., 2001). In particular, the case of two-dimensional
periodic rigid block assemblies has been modelled by adopting an orthotropic Cosserat continuum
(Mühlhaus, 1993; Masiani et al., 1995; Sulem and Mühlhaus, 1997; Trovalusci and Masiani, 1999).

A specific rigid element model has been recently proposed as an alternative computational method
(Casolo, 2004). Following an engineering approach, the heterogeneous solid material is imaged as a ‘‘mech-
anism’’ made by the assembly of rigid elements connected by simple elastic springs, in the spirit of the rigid
body spring model, RBSM (Kawai, 1978; Griffiths and Mustoe, 2001). These elastic devices are defined by a
direct discrete formulation that does not need a differential formulation of the field equations for the solid
material (Tonti, 2001). Focusing on the global dynamic response, at a level of detail that was larger than the
size of the minimum periodic cell, the proposed approach proved successful in transferring a memory of the
original texture geometry from the composite micro-scale to the elements meso-scale also when adopting
very few degrees of freedom.

The sequel of such research is presented in this paper, where the relationship between the proposed
mechanistic formulation and the orthotropic Cosserat continuum is expounded with emphasis on the
capability of discerning the impact of micro-structure texture at the macro-scale. Numerical applications
investigate two orthotropic masonry-like arrangements in the case of a load applied on a small area by
adopting different ratios for the elastic moduli of the material components. In these cases the local shear
deformation clearly depends on the blocks shape and their geometric arrangement in the composite solid,
and the ‘‘local’’ mean rotation of the blocks appears as an important feature that should be accounted in
order to include a memory of the micro-structure at a larger scale. These local effects become particularly
relevant in the case of large differences in the elastic moduli of the components, as it happens in
real masonry walls when mortar joints suffer high mechanical degradation (Trovalusci and Masiani,
2003).
2. Plane orthotropic Cosserat elastic continuum

2.1. Governing equations

The governing equations for the case of a plane solid body X � R2 made of linear elastic Cosserat mate-
rial are presented from an engineering point of view. Making reference to the symbols shown in Fig. 1, two
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Fig. 1. Adopted notation for the plane Cosserat continuum.

S. Casolo / International Journal of Solids and Structures 43 (2006) 475–496 477
displacements {u1,u2} and a local rotation w3 are associated to each point, while Sab and M3a are the com-
ponents of the stress and couple stress tensor, respectively.

The field equations and the boundary conditions are:
Sab;b þ pa ¼ 0

M3a;a þ �3abSba þ l3 ¼ 0

�
in X

Sabnb � sa ¼ 0

M3ana � m3 ¼ 0

�
on oX

ð1Þ
where �ijk is the alternating symbol; pa and l3 are respectively the body forces and the body couple; n1, n2
are the components of the outward unit normal to the boundary oX; sa and m3 are the prescribed tractions
and couples; a,b = 1, 2. Summation of repeated indexes is implicit. The external virtual work We and the
internal virtual work Wi are defined as follows:
We ¼
Z
X
ðpaua þ l3w3ÞdV þ

Z
oX

saua þ m3w3ð ÞdA ð2Þ

Wi ¼
Z
X

SabEab þM3aK3a

� �
dV ð3Þ
Balance of work We ¼ Wi together with the equilibrium equations (1) leads to the definition of strain ten-
sors Eab and K3a, conjugated in virtual work to the stress and the couple stress tensors, as a function of the
displacements and the local rotation
Eab ¼ ua;b þ �3abw3

K3a ¼ w3;a

ð4Þ
Eq. (4) shows that shear strains are not symmetric as they are affected by the local rotation w3. In particular,
for a 5 b it is worth to distinguish a ‘‘symmetric shear strain’’ Es, a ‘‘macro-rotation’’ Ew, and a ‘‘relative
micro-rotation’’ Ew as follows (Fig. 2)
Es ¼ 1
2
ðu1;2 þ u2;1Þ

Ew ¼ 1
2
ð�u1;2 þ u2;1Þ

Ew ¼ Ew � w3

9>=
>; !

E12 ¼ Es � Ew

E21 ¼ Es þ Ew

�
ð5Þ
The constitutive relations for a centro-symmetric Cosserat continuum that corresponds to a two-dimen-
sional periodical masonry-like block texture (Trovalusci and Masiani, 1999) can be written as
Sab ¼ CabcdEcd

M3a ¼ D3a3bK3b

ð6Þ
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Fig. 2. Simple deformation schemes of plane Cosserat continuum.

478 S. Casolo / International Journal of Solids and Structures 43 (2006) 475–496
or in terms of elastic compliance
Eab ¼ AabcdScd

K3a ¼ B3a3bM3b

ð7Þ
being A = C�1 and B = D�1.
In the case of orthotropic texture (Fig. 3) the shear response and the axial response are decoupled, and it

is useful to express the elastic tensor of the corresponding hyperelastic Cosserat continuum in a reference
frame aligned with the principal axes of the material as follows
S11

S22

S12

S21

M31

M32

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼
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>>>>>>>>:

9>>>>>>>>=
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ð8Þ
The shear moduli C1212, C1221, C2121 and flexural moduli D3a3a specifically characterise the orthotropic Coss-
erat continuum. In the special case of C1212 = C1221 = C2121 = G the local rotation w3 does not affect the
shear stresses that remain always symmetric S12 = S21.

2.2. Identification of elastic moduli

The elastic parameters of the orthotropic Cosserat continuum have been identified from the two ma-
sonry-like composite textures shown in Fig. 3a and b. The dimensions of the rectangular blocks are
2l · 2h=25 · 5.5 cm2, whereas the side of the square blocks is 2l = 12 cm. The thickness of all the mortar
joints is t = 1 cm. An homogeneous isotropic material has been assumed for all the components with a fixed
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Fig. 3. Examples of orthotropic masonry-like textures.
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Fig. 4. Finite element mesh of a rectangular block with indication of the points used for measuring the local rotation and the body
forces applied as a local couple.
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Poisson coefficient m = 0.1. The elastic modulus of the blocks is Eb = 10000 MPa, while different values are
given to the elastic moduli of the horizontal (Eh) and the vertical (Ev) mortal joints. Since the vertical joints
are usually weaker than the horizontal, then a fixed ratio Eh/Ev = 10 has been assumed in all the numerical
analyses.

A computational approach has been adopted to identify the elastic tensor. The evaluation of axial mod-
uli Caabb is straightforward by applying anti-symmetric tractions under symmetric essential boundary con-
ditions (Anthoine, 1995). The evaluation of the shear moduli C1212, C1221 and C2121 requires some more
attention since in the present case all the material components are deformable, i.e. the blocks are not
‘‘rigid’’. As a consequence, it is necessary to define a clear criterion for measuring the mean local rotation
of the blocks, and moreover for applying the external loads to the blocks as to reproduce a periodic field of
‘‘local’’ body couples. This is important in order to obtain a good estimate of the mean elastic behaviour
also when the ratio of elastic moduli of the blocks and the joints is not very high. According to the scheme
shown in Fig. 4, a local couple is obtained as a linear distribution of body forces, while the local rotation
angle w3 is given by
w3 ¼
uC2 � uA2

4l
þ uD1 � uB1

4h
ð9Þ
The three Cosserat shear moduli are obtained by means of the two tests shown in Fig. 5, for which the
macro-rotation is null, Ew = 0. The test shown on the left side (‘‘symm’’) is made considering a refined finite
element mesh of the representative volume element with periodic displacement boundary conditions and
loaded by anti-periodic shear stresses Ss that have equal absolute value on all the four sides. The macro-
scopic values of Es and ws are measured on the deformed finite element mesh (Figs. 6 and 7). The test shown
on the right side (‘‘skew’’) considers a representative volume element with displacement boundary condi-
tions that produce null symmetric shear strain, Es = 0, while the periodic local couples l3 are applied to
the blocks. In this case the macroscopic quantity measured on the finite element meshes (Figs. 6 and 7)
is the local rotation ww, and periodicity guarantees that l3 = S12 � S21 as a consequence of the second
row of Eq. (1). The constitutive relations for these two tests are
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Fig. 5. Scheme of the tests for identification of Cosserat shear elasticities.



Fig. 6. Deformation and stress maps for a rectangular block texture with Log Eb

Eh
¼ 2 and Eh/Ev = 10. Symmetric shear test (‘‘symm’’),

in the first row; local couples test (‘‘skew’’) in the second row.

Fig. 7. Deformation and stress maps for a square block texture with Log Eb

Eh
¼ 2 and Eh/Ev = 10. Symmetric shear test (‘‘symm’’), in the

first row; local couples test (‘‘skew’’) in the second row.
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C1212 C1221

C1221 C2121

� �
Es þ ws

Es � ws

� �
¼

Ss

Ss

� �
C1212 C1221

C1221 C2121

� �
ww

�ww

� �
¼

S12

S21

� � ð10Þ
By merging these equations, the unknown shear moduli C1212, C1221 and C2121 are obtained as a solution of
the following linear system
Es þ ws Es � ws 0

0 Es þ ws Es � ws

ww �2ww ww

2
64

3
75

C1212

C1221

C2121

8><
>:

9>=
>; ¼

Ss

Ss

l3

8><
>:

9>=
>; ð11Þ
The evaluation of in-plane flexural moduli D3131 and D3232 requires to adopt deformed configurations that
cannot be periodic. In the present work the tests have been made on square representative volume elements
whose size is 2e = 26 cm, and the schemes of the two direct tests are shown in Fig. 8, being K31 = K32 = w3/e.
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Fig. 8. Scheme of the tests for identification of Cosserat flexural elasticities.

Table 1
Cosserat elastic moduli (Eb = 10000 MPa, Eh/Ev = 10, m = 0.1)

Log Eb

Eh
C1111 10

6

(N/m2)
C1122 10

6

(N/m2)
C2222 10

6

(N/m2)
C1212 10

6

(N/m2)
C1221 10

6

(N/m2)
C2121 10

6

(N/m2)
D3131 10

6

(N)
D3232 10

6

(N)

Rectangular block texture

1 4858 284.0 4110 1791 684.3 4656 25.66 22.79
2 1248 16.78 609.8 247.8 196.9 642.1 7.113 3.401
3 149.5 0.917 64.11 26.85 22.50 66.94 1.061 0.358
4 15.25 0.082 6.445 2.712 2.283 6.725 0.115 0.036

Square block texture

1 1873 252.9 5569 2377 856.9 1671 10.17 31.13
2 287.7 23.46 1121 369.9 144.2 285.3 1.511 6.298
3 30.86 1.987 124.9 39.36 15.53 30.84 0.161 0.702
4 3.110 0.194 12.63 3.962 1.565 3.110 0.016 0.071
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Table 1 reports the elastic moduli identified for the rectangular and the square block textures in corre-
spondence of different values assigned to the Young moduli of the material components.
3. Rigid element discrete model

Adopting rigid elements (Casolo, 2004), a plane solid body X � R2 is partitioned into m quadrilaterals
xi so that no vertex of one quadrilateral element lies on the edge of another element. Given a global Carte-
sian coordinate frame {O,x,y}, the deformed configuration of the discrete model is described by the dis-
placements and rotation {ui,vi,wi} of the local reference frames {oi,ni,gi} fixed to the barycentre of each
moving element, as shown in Fig. 9. Thus, the whole kinematic configuration is described by the 3m
Lagrangian coordinates assembled in the vector {u}:
fugT ¼ fu1; v1;w1; u2; v2;w2; . . . ; um; vm;wmg ð12Þ
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Fig. 9. Displaced couple of rigid elements with evidence of the adopted notation.



482 S. Casolo / International Journal of Solids and Structures 43 (2006) 475–496
The external load is applied considering the undeformed geometry, and the three resultants acting on each
element xi are assembled into a vector of generalised external load {p}, conjugated with vector {u}, as
follows:
Fig. 10
fpgT ¼ fp1; q1; l1; p2; q2; l2; . . . ; pm; qm; lmg ð13Þ

The elastic devices that connect each couple of elements are placed in correspondence of three connection
points named P, Q and R, and are represented like line-springs, as shown in Fig. 10, on the left. Two normal
elastic connections are placed at the external points P and R, at distance b from Q, while a shear elastic con-

nection is placed in the mid-point Q. Axial strains eP and eR are associated with the volumes of pertinence
VP and VR, while a shear strain eQ is associated with volume VQ = VP + VR. The vector of generalised strain
{e} and the diagonal matrix of volumes [V] are thus assembled as follows:
fegT ¼ eP1 ; e
Q
1 ; e

R
1 ; e

P
2 ; e

Q
2 ; e

R
2 ; . . . ; e

P
r ; e

Q
r ; e

R
r

� �
ð14Þ

½V � ¼ Diag V P
1 ; V

Q
1 ; V

R
1 ; V

P
2 ; V

Q
2 ; V

R
2 ; . . . ; V

P
r ; V

Q
r ; V

R
r

� �
ð15Þ
being r the number of sides that connect all the elements of the discrete model. Given the geometry shown
in Fig. 10, on the right, and assuming small displacements, the relation between the strain measures and the
Lagrangian coordinates for a couple of adjoining elements xi and xj is
eP

eQ

eR

8><
>:

9>=
>; ¼ � 1

hi þ hj

cos a sin a ½sinða� hiÞdi þ b�
� sin a cos a ½cosða� hiÞdi�
cos a sin a ½sinða� hiÞdi � b�

2
64

3
75

ui
vi
wi

8><
>:

9>=
>;

þ 1

hi þ hj

cos a sin a ½sinða� hjÞdj þ b�
� sin a cos a ½cosða� hjÞdj�
cos a sin a ½sinða� hjÞdj � b�

2
64

3
75

uj
vj
wj

8><
>:

9>=
>; ð16Þ
The linearity of (16), permits to express the strain–displacement relations for the whole model by consi-
dering a 3r · 3m matrix [B]:
feg ¼ ½B�fug ð17Þ

The definition of an external virtual work We of the discrete system, and the balance with the correspond-
ing internal virtual work Wi permits to introduce a measure of stress {r} conjugated in virtual work to the
strain assigned to each connecting device
We ¼ fugTfpg ð18Þ

Wi ¼ fegT½V �frg ð19Þ
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. Couple of rigid elements xi and xj of irregular shape with evidence of the tributary volumes VR and VP and the elastic devices.
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being {r} the vector of generalised stress assembled as follows:
1 Th
approx
frgT ¼ rP
1 ; r

Q
1 ; r

R
1 ; r

P
2 ;r

Q
2 ; r

R
2 ; . . . ; r

P
r ; r

Q
r ; r

R
r

� �
ð20Þ
Obeying the spirit of Hooke�s law, a linear constitutive relation is assumed
frg ¼ ½D�feg ð21Þ

where [D] is the constitutive matrix of the connecting devices
½D� ¼ Diag kP1 ; k
Q
1 ; k

R
1 ; k

P
2 ; k

Q
2 ; k

R
2 ; . . . ; k

P
r ; k

Q
r ; k

R
r

� �
ð22Þ
At this point the balance of virtual work gives
fugTfpg ¼ We ¼ Wi ¼ fugT½B�T½V �½D�½B�fug ð23Þ

and the arbitrary of fug leads to the following resolving system:
fpg ¼ ½B�T½V �½D�½B�fug ¼ ½K�fug ð24Þ

being [K] the global generalised stiffness matrix of the discrete system. The size effects and the internal
length are taken into account by means of the procedure described in (Casolo, 2004).
4. Relationship between elasticities

This section expounds the relationship between the mechanical characteristics of the connecting devices
of rigid elements and a given orthotropic Cosserat material. In the present rigid element formulation, the
discrete material model is composed by an assembly of unit cells that can be represented as shown in Fig.
11, by the shaded area. These unit cells can be imaged as a sort of ‘‘heuristic molecules’’, in which the rigid
elements are ‘‘atoms’’ bonded together by the elastic springs. Given the disposition of the springs,1 the con-
stitutive behaviour of this material model is governed by six parameters: kAx ; kAy , for the axial stiffnesses
along the horizontal and vertical directions; kQh ; kQv , for the shear stiffnesses along the horizontal and ver-
tical directions; bx, by for the distances of the horizontal and vertical axial connections. The reduction from
eight to six parameters in the passage from orthotropic Cosserat continuum to rigid elements implies the
loss of information about the axial and shear coupling effects due to Poisson coefficient and the Cosserat
shear moduli. As a consequence, in the procedure of identification we need to specify with clarity the char-
acter of the boundary conditions that involve the displacements or the tractions.

4.1. Axial moduli

The case of simple normal loading acting along two opposite sides parallel to the principal direction of
the material is considered with the imposition of traction-free boundary conditions on the other two sides.
The following constitutive relations hold:
E11 ¼ A1111S11; E22 ¼ A2222S22 ð25Þ

Using rigid elements, after assigning ex = E11, ey = E22, rx = S11 and ry = S22, the corresponding situation
is described by
ex ¼
rx

kAx
; ey ¼

ry

kAy
ð26Þ
e disposition of the springs in the present formulation implies to neglect the axial coupling due to Poisson effect, nevertheless this
imation is not necessarily intrinsic of the model.
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and thus we have2
2 In
consta

being
kAx ¼ 1

A1111

¼ C1111C2222 � C2
1122

C2222

kAy ¼ 1

A2222

¼ C1111C2222 � C2
1122

C1111

ð27Þ
4.2. Shear moduli

In the case of symmetric shear loading (S12 = S21 = Ss) and absence of macro-rotation (Ew = 0), the con-
stitutive relation of the orthotropic Cosserat continuum gives:
A1212 A1221

A1221 A2121

� �
Ss

Ss

� �
¼

E12

E21

� �
¼

Es þ w3

Es � w3

� �
ð28Þ
The situation with rigid elements is shown in Fig. 12, where we note that distinct shear deformations are
associated to the vertical and horizontal shear springs. After defining the mean shear strain as es =
u/e = v/e and the local rigid rotation ratio as q = w/es, the generalised shear strains for the vertical and
the horizontal connecting devices are
eh ¼ es þ w ¼ esð1þ qÞ
ev ¼ es � w ¼ esð1� qÞ

ð29Þ
As a consequence, the corresponding constitutive relation is
1=kQh 0

0 1=kQv

" #
rs

rs

� �
¼

eh
ev

� �
¼

es þ w

es � w

� �
ð30Þ
the case of plane stress orthotropic Cauchy continuum, the constitutive relation is often written adopting the ‘‘engineering
nts’’ as follows (Lekhnitskii, 1968)

exx
eyy
exy

8><
>:

9>=
>; ¼

1
Ex

� myx
Ey

0

� mxy
Ex

1
Ey

0

0 0 1
2G

2
664

3
775

rxx

ryy

rxy

8><
>:

9>=
>;

mxyEy = myxEx. As a consequence, in this case we obtain kAx ¼ Ex and kAy ¼ Ey from Eq. (27).
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Thus, after assigning eh = E12, ev = E21 and rs = Ss, the comparison of Eqs. (28) and (30) leads to3,4
3 Th
follow

on the
chy co

4 It i
Mühlh
texture
kQh ¼ 1

A1212 þ A1221

¼ C1212C2121 � C2
1221

C2121 � C1221

kQv ¼ 1

A1221 þ A2121

¼ C1212C2121 � C2
1221

C1212 � C1221

ð31Þ
Parameter q is related to the orthotropic shear moduli of the Cosserat continuum by
kQh
kQv

¼ ev
eh

¼ 1� q
1þ q

¼ C1212 � C1221

C2121 � C1221

ð32Þ
and thus
q ¼ C2121 � C1212

C2121 þ C1212 � 2C1221

ð33Þ
e engineering shear modulus G can be obtained as the ratio between the mean shear stress Ss and the mean shear strain Es as
s:

G ¼ Ss

2Es

¼ C1212C2121 � C2
1221

C2121 þ C1212 � 2C1221

other hand, if we consider an isotropic Cosserat material for which C1212 = C2121 = G, then the limit of Eq. (31) toward a Cau-
ntinuum gives

lim
C1221!G

kQh ¼ lim
C1221!G

kQv ¼ 2G

s worth considering also the case in which the elastic tensor C is diagonal, as proposed in Masiani et al. (1995); Sulem and
aus (1997); Trovalusci and Masiani (1999), that considered composites made by rigid blocks arranged with a masonry-like
. In this case C1221 = 0, and the following simple relations hold:

kQh ¼ C1212

kQv ¼ C2121
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while a ‘‘symmetric’’ shear stiffness can be defined as
kS ¼ rs

es
¼ kh

1� q
¼ kv

1þ q
¼ ðC1212C2121 � C2

1221ÞðC2121 þ C1212 � 2C1221Þ
2ðC2121 � C1212ÞðC1212 � C1221Þ

ð34Þ
4.3. Flexural moduli and characteristic length

The case of in-plane flexural bending is shown in Fig. 13. The curvatures of the continuum and the
strains in the connecting devices of rigid elements are related to the angle of rotation w according to
K31 ¼ K32 ¼ w=e

ex ¼ w
bx
e
; ey ¼ w

by
e

ð35Þ
while the couple stresses of the continuum are related to the generalised stresses in the connection devices by
M31 ¼ rxbx ¼ kAx exbx; M32 ¼ ryby ¼ kAy eyby ð36Þ
From Eqs. (35) and (36), after introducing the constitutive relations, the distances bx and by are obtained as
a function of in-plane flexural stiffness as follows:
bx ¼ bxe ¼
ffiffiffiffiffiffiffiffiffiffi
D3131

kAx

s

by ¼ bye ¼
ffiffiffiffiffiffiffiffiffiffi
D3232

kAy

s ð37Þ
The outlined procedure gives the values reported in Table 2 that is related to Table 1. It is worth observing
that the local rotation of rigid elements is in accord with the symmetric shear strain (q = w/es > 0) for the
rectangular block texture, while the opposite happens when approximating the square block texture. More-
over, modelling the in-plane flexural stiffness for high Eb/Eh ratios requires a significant increase of bx in the
case of rectangular block texture, while this does not happen for the square block texture. These facts dis-
play the different relevance of the micro-structure effects for the two texture. Finally, it must be mentioned
that present values are coherent and identical to those obtained by the direct identification procedure out-
lined in (Casolo, 2004).
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ky
A ky
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by by
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x
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Fig. 13. Couple of rigid elements subjected to in-plane bending.



Table 2
Rigid element parameters (Eb = 10000 MPa, Eh/Ev = 10, m = 0.1)

Log Eb

Eh
kx 106 (N/m2) ky 10

6 (N/m2) kS 106 (N/m2) q bx by

Rectangular block texture

1 4838 4093 4547 0.564 0.560 0.574
2 1247 609.6 1318 0.795 0.581 0.575
3 149.5 64.10 162.9 0.822 0.648 0.575
4 15.25 6.444 16.66 0.824 0.669 0.575

Square block texture

1 1862 5535 3054 �0.303 0.568 0.577
2 287.2 1119 488.1 �0.231 0.558 0.577
3 30.83 124.8 52.18 �0.217 0.556 0.577
4 3.107 12.62 5.254 �0.216 0.556 0.577
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5. Numerical results and comparisons

A number of numerical tests have been made with the aim of comparing the performance of three mac-
roscopic approaches: two finite element models based on Cauchy and Cosserat continuum theory, and the
proposed rigid element model. In general, the mean response of the three macroscopic approaches in terms
of global displacements proved similar and adequate in the linear elastic field. The main difference is ex-
pected in the description of the strain and stress maps, due to the non-symmetry of the Cosserat strain
and stress tensors, and the different characteristics of the shear connecting devices of the proposed rigid
elements.

The case of the composite masonry-like wall shown in Fig. 14 is presented in detail with the aim to eval-
uate the influence of the texture on the mechanism of diffusion of a load applied on a limited area, and in
particular to compare the capability of different macroscopic approaches to retain memory of the original
composite behaviour.

Two refined finite element meshes of the rectangular and square block composite textures have been con-
sidered as reference, adopting the computer code Abaqus (Hibbitt et al., 2004). Plane stress 4-node bilinear
continuum solid elements have been used, with a total number of 41302 and 39734 degrees of freedom
respectively. These two composite models are made of Cauchy isotropic materials with fixed Poisson coef-
ficient m = 0.1 and Young modulus Eb = 10000 MPa for the blocks. Different values, in the range 1�10000,
have been assumed for the ratio of Young moduli of the blocks and of the horizontal joints Eb/Eh, while
Young modulus of the vertical joint material Ev is always Ev = Eh/10. Very high Eb/Eh values are consi-
dered with the purpose of studying situations in which the joints� material is highly degraded.

Regular meshes of 28 · 28 elements are adopted for the macroscopic models presented here. Plane stress
4-node bilinear finite elements are used for both the Cauchy and Cosserat homogeneous continuum
0.26 m 

12000 N 

1.82 m 

Fig. 14. Scheme of the square wall loaded by a vertical load distributed in the shaded square area; the thickness is 0.12 m.
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material models, with a total number of 1624 and 2436 degrees of freedom respectively. In particular, Coss-
erat linear elasticity has been implemented by assigning to each node the three degrees of freedom u1, u2, w3,
while the displacements and the local rotation are interpolated by bilinear shape functions. Then, the
strains are evaluated by Eq. (4) and the constitutive relation is given by Eq. (8). The assembly and the reso-
lution of the governing equations follows the same scheme of a classic finite element code based on a dis-
placement approach (Zani, 2004). Finally, the rigid element model, with 2352 degrees of freedom, has been
calculated by means of the same code already implemented in (Casolo, 2004).

The response of the different models in terms of global displacement is quite similar, as shown qualita-
tively in Fig. 15, and also the values of maximum vertical displacement reported in Table 3 manifest a good
accord if we consider the great difference of the alternative approaches. All the models are able to distin-
guish the response of the two textures in terms of global displacements, and in particular the different width
Fig. 15. Deformation maps. Comparison of the refined composite finite element models, on the left, with the three macroscopic
approaches; case of Log Eb

Eh
¼ 2.

Table 3
Maximum vertical displacement [m]; Eb = 10000 MPa, Eh/Ev = 10, m = 0.1

Log Eb

Eh
Composite finite elements Cauchy finite elements Cosserat finite elements Specific rigid elements

dof 41302/39734 1624 2436 2352

Rectangular block texture

1 4.392 · 10�5 4.389 · 10�5 4.339 · 10�5 4.336 · 10�5

2 2.741 · 10�4 2.827 · 10�4 2.803 · 10�4 2.763 · 10�4

3 2.473 · 10�3 2.650 · 10�3 2.630 · 10�3 2.573 · 10�3

4 2.414 · 10�2 2.631 · 10�2 2.611 · 10�2 2.550 · 10�2

Square block texture

1 4.027 · 10�5 3.844 · 10�5 3.834 · 10�5 3.831 · 10�5

2 2.136 · 10�4 2.024 · 10�4 2.019 · 10�4 2.007 · 10�4

3 1.937 · 10�3 1.836 · 10�3 1.831 · 10�3 1.817 · 10�3

4 1.917 · 10�2 1.817 · 10�2 1.812 · 10�2 1.799 · 10�2
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and shape of the valley induced by the load on the top side of the wall. This fact indicates that in this case
an orthotropic Cauchy material seems adequate in order to obtain a good approximation of the global dis-
placements and deformed shape.

A better understanding of the texture effects requires to examine the maps of strain and stress. The maps
shown in Figs. 16 and 17, relative to the finite element meshes of the composite walls, clearly reveal the trace
of texture geometry, with the strains that primarily involve the weak material of the joints while the stresses
find their way toward the base preferably passing through the blocks. It is worth to observe two aspects that
are consequence of the different texture geometry: (i) the angle of diffusion of the load, and in particular of
Fig. 16. Refined finite element model of the wall made with the rectangular block texture. Strain and stress maps. Case with
Log Eb

Eh
¼ 2.



Fig. 17. Refined finite element model of the wall made with the square block texture. Strain and stress maps. Case with Log Eb

Eh
¼ 2.
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the shear stress S12 is governed by the geometry and arrangement of the blocks, (ii) the deformation mech-
anism, and in particular the shear strain of the rectangular block texture tends to involve in preference the
material of the horizontal joints, while for the square block texture the deformation involve mainly the ver-
tical joints. The first observation reveals the need of adopting an orthotropic material model to describe the
stress distribution at the macro-scale. The second observation displays the loss of information related with
the choice of a macroscopic description that adopts a symmetric strain tensor, Es = E12 = E21, and suggests
the adoption of a more sophisticated material model to overcome this limitation.

The three macro-scale solutions are compared in terms of strain/stress components by the colour maps
shown in Figs. 18–21. Considering finite element solutions, the axial components are plotted as constant on



Fig. 18. Comparison of the macro-scale maps of strain (·1000) for the case of rectangular block texture. Case with Log Eb

Eh
¼ 2.
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each quarter of element by assigning the value at the corresponding Gauss point, while the shear compo-
nents are plotted as constant on the entire element by assigning the average value of the four Gauss points.
This smoothing has been assumed since shear values suffer for a slight fluctuation into each element due to
the contribute of the local-rotation w3. In the case of the specific rigid elements, the colour maps are simply
based on the values of the generalised strain and stress of the springs as defined by Eqs. (16), (21), and these



Fig. 19. Comparison of the macro-scale maps of stress for the case of rectangular block texture. Case with Log Eb

Eh
¼ 2.
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values are plotted as constant for each quarter of element without smoothing. The stress maps shown in
Figs. 19 and 21 display small differences between the three macroscopic models for both masonry-like tex-
tures. In particular, the three models give an adequate estimate of the values of the stress components that
pass through the blocks of the heterogeneous composite materials, and also the shape of the areas of dif-
fusion of the load are comparable with the maps reported in Figs. 16 and 17. The situation is quite different
for what regards the strain maps shown in Figs. 18 and 20. In this case, the Cosserat continuum and the



Fig. 20. Comparison of the macro-scale maps of strain (·1000) for the case of square block texture. Case with Log Eb

Eh
¼ 2.
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proposed rigid element model clearly distinguish the strain components E12 and E21, with a prevalence of
E12 for the macro-scale maps relatives to the rectangular block texture, while E21 prevails for the square
block texture. Recalling the geometric meaning of Eqs. (5) and (29), we note that E12 can be related with
the shear deformation of the horizontal joints of the composite texture, while E21 can be related with the
shear deformation of the vertical joints, and thus there is a substantial accord with the previous observation



Fig. 21. Comparison of the macro-scale maps of stress for the case of square block texture. Case with Log Eb

Eh
¼ 2.
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on the strain maps of Figs. 16 and 17. In describing deformation, Cosserat finite elements and the proposed
rigid element model clearly demonstrate their superiority respect to Cauchy finite elements. This feature can
be important in the formulation of a macro-scale constitutive model with the capability of describing the
progressive degradation of a structured material, and it can also be useful in modelling Mohr-Coulomb
effects that are different depending on the direction of the joints.
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6. Final remarks

The present contribution expounds the relation between orthotropic Cosserat continuum and a specific
rigid element approach, with the objective to model plane regular structured materials at the macro-scale.
Given two masonry-like composite textures, the corresponding orthotropic Cosserat elastic tensor is ob-
tained by means of a computational homogenisation procedure, then the characteristics of rigid elements
are derived and related to those of the continuum material. This passage implies a lose of information due
to the contraction of the number elastic parameters from eight to six, nevertheless the numerical results
show a substantial equivalence of performance between these two approaches. In particular they are able
to retain memory of the different shear deformation mechanism of the original textures with reduced com-
putational effort.

The adoption of a mechanistic discrete model that concentrates elasticity into simple connecting springs
can give some advantage in term of simplicity respect to a continuum model, in particular when there is the
need of implementing a constitutive relation that requires the description of cyclic responses and degrada-
tion (Casolo, 2000). A mechanistic approach can be useful also in the macroscopic formulation of solid
mechanics problems when dealing with composite materials that change their micro-structure characteris-
tics when loading in the non-linear field (Casolo, 2004). In this perspective, as an engineering alternative to
the continuum approach, it is possible to imagine a sort of ‘‘heuristic-molecular’’ material model in which
the disposition and the characteristics of the spring devices connecting the elements of a given unit-cell
describe at the macro-scale the essential micro-structure aspects of an heterogeneous structured material.
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